367 research outputs found

    In Darwin’s Garden: an evolutionary exploration of augmented reality in practice

    Get PDF
    This book is part of the Springer Advanced Information and Knowledge Processing Series and will be published under Springer's Open Access policy.This chapter discusses the rapid developments in augmented reality and mixed reality technologies, from a practitioner’s perspective of making the augmented reality sculptural work In Darwin’s Garden. From its conception in 2012, to its exhibition at Carbon Meets Silicon II in 2017, the advances in augmented reality technology led to an interplay between the goal of the creators and the technological realisation of that vision. The art, design and technology involved, generated a reactive process that was mired in external influences as the accessibility to augmented reality became commercially valuable and subsequently restricted. This chapter will be of interest to anyone who wants to understand more about the possibilities, technologies and processes involved in realising mixed reality practice and about the commercial culture that supports it

    Immersive technology and medical visualisation: a user's guide

    Get PDF
    The immersive technologies of Virtual and Augmented Reality offer a new medium for visualisation. Where previous technologies allowed us only two-dimensional representations, constrained by a surface or a screen, these new immersive technologies will soon allow us to experience three dimensional environments that can occupy our entire field of view. This is a technological breakthrough for any field that requires visualisation, and in this chapter I explore the implications for medical visualisation in the near-to-medium future. First, I introduce Virtual Reality and Augmented Reality respectively, and identify the essential characteristics, and current state-of-the-art, for each. I will then survey some prominent applications already in-use within the medical field, and suggest potential use cases that remain under-explored. Finally, I will offer practical advice for those seeking to exploit these new tools

    Design Patterns for Augmented Reality Learning Games

    Get PDF
    Augmented Reality (AR) is expected to receive a major uptake with the recent availability of high quality wearable AR devices such as Microsoft’s Hololens. However, the design of interaction with AR applications and games is still a field of experimentation and upcoming innovations in sensor technology provide new ways. With this paper, we aim to provide a step towards the structured use of design patterns for sensor-based AR games, which can also inform general application development in the field of AR

    Phosphorylation of Ubc9 by Cdk1 Enhances SUMOylation Activity

    Get PDF
    Increasing evidence has pointed to an important role of SUMOylation in cell cycle regulation, especially for M phase. In the current studies, we have obtained evidence through in vitro studies that the master M phase regulator CDK1/cyclin B kinase phosphorylates the SUMOylation machinery component Ubc9, leading to its enhanced SUMOylation activity. First, we show that CDK1/cyclin B, but not many other cell cycle kinases such as CDK2/cyclin E, ERK1, ERK2, PKA and JNK2/SAPK1, specifically enhances SUMOylation activity. Second, CDK1/cyclin B phosphorylates the SUMOylation machinery component Ubc9, but not SAE1/SAE2 or SUMO1. Third, CDK1/cyclin B-phosphorylated Ubc9 exhibits increased SUMOylation activity and elevated accumulation of the Ubc9-SUMO1 thioester conjugate. Fourth, CDK1/cyclin B enhances SUMOylation activity through phosphorylation of Ubc9 at serine 71. These studies demonstrate for the first time that the cell cycle-specific kinase CDK1/cyclin B phosphorylates a SUMOylation machinery component to increase its overall SUMOylation activity, suggesting that SUMOylation is part of the cell cycle program orchestrated by CDK1 through Ubc9

    Analysis of Global Sumoylation Changes Occurring during Keratinocyte Differentiation

    Get PDF
    Sumoylation is a highly dynamic process that plays a role in a multitude of processes ranging from cell cycle progression to mRNA processing and cancer. A previous study from our lab demonstrated that SUMO plays an important role in keratinocyte differentiation. Here we present a new method of tracking the sumoylation state of proteins by creating a stably transfected HaCaT keratinocyte cell line expressing an inducible SNAP-SUMO3 protein. The SNAP-tag allows covalent fluorescent labeling that is denaturation resistant. When combined with two-dimensional gel electrophoresis, the SNAP-tag technology provides direct visualization of sumoylated targets and can be used to follow temporal changes in the global cohort of sumoylated proteins during dynamic processes such as differentiation. HaCaT keratinocyte cells expressing SNAP-SUMO3 displayed normal morphological and biochemical features that are consistent with typical keratinocyte differentiation. SNAP-SUMO3 also localized normally in these cells with a predominantly nuclear signal and some minor cytoplasmic staining, consistent with previous reports for untagged SUMO2/3. During keratinocyte differentiation the total number of proteins modified by SNAP-SUMO3 was highest in basal cells, decreased abruptly after induction of differentiation, and slowly rebounded beginning between 48 and 72 hours as differentiation progressed. However, within this overall trend the pattern of change for individual sumoylated proteins was highly variable with both increases and decreases in amount over time. From these results we conclude that sumoylation of proteins during keratinocyte differentiation is a complex process which likely reflects and contributes to the biochemical changes that drive differentiation

    Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case

    Get PDF
    Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated to aeronautic sector and the environment of maintenance. AR tools seem well indicated to solve constraints of productivity and quality on the aeronautical maintenance activities by simplifying data interactions for the workers. However, few evaluations of AR have been done in real processes due to the difficulty of integrating the technology without proper tools for deployment and assessing the results. This paper proposes a method to select suitable criteria for AR evaluation in industrial environment and to deploy AR solutions suited to assist maintenance workers. These are used to set up on-field experiments that demonstrate benefits of AR on process and user point of view for different profiles of workers. Further work will consist on using these elements to extend results to AR evaluation on the whole aeronautical maintenance process. A classification of maintenance activities linked to workers specific needs will lead to prediction of the value that augmented reality would bring to each activity

    FTY720 Suppresses Liver Tumor Metastasis by Reducing the Population of Circulating Endothelial Progenitor Cells

    Get PDF
    Background: Surgical procedures such as liver resection and liver transplantation are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor recurrence and metastasis after liver surgery remains a major problem. Recent studies have shown that hepatic ischemia-reperfusion (I/R) injury and endothelial progenitor cells (EPCs) contribute to tumor growth and metastasis. We aim to investigate the mechanism of FTY720, which was originally applied as an immunomodulator, on suppression of liver tumor metastasis after liver resection and partial hepatic I/R injury. Methodology/Principal Findings: An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Two weeks after orthotopic liver tumor implantation, the rats underwent liver resection for tumor-bearing lobe and partial hepatic I/R injury. FTY720 (2 mg/kg) was administered through the inferior caval vein before and after I/R injury. Blood samples were taken at days 0, 1, 3, 7, 14, 21 and 28 for detection of circulating EPCs (CD133+CD34+). Our results showed that intrahepatic and lung metastases were significantly inhibited together with less tumor angiogenesis by FTY720 treatment. The number of circulating EPCs was also significantly decreased by FTY720 treatment from day 7 to day 28. Hepatic gene expressions of CXCL10, VEGF, CXCR3, CXCR4 induced by hepatic I/R injury were down-regulated in the treatment group. Conclusions/Significance: FTY720 suppressed liver tumor metastasis after liver resection marred by hepatic I/R injury in a rat liver tumor model by attenuating hepatic I/R injury and reducing circulating EPCs. © 2012 Li et al.published_or_final_versio

    Reasoning Under Uncertainty: Towards Collaborative Interactive Machine Learning

    Get PDF
    In this paper, we present the current state-of-the-art of decision making (DM) and machine learning (ML) and bridge the two research domains to create an integrated approach of complex problem solving based on human and computational agents. We present a novel classification of ML, emphasizing the human-in-the-loop in interactive ML (iML) and more specific on collaborative interactive ML (ciML), which we understand as a deep integrated version of iML, where humans and algorithms work hand in hand to solve complex problems. Both humans and computers have specific strengths and weaknesses and integrating humans into machine learning processes might be a very efficient way for tackling problems. This approach bears immense research potential for various domains, e.g., in health informatics or in industrial applications. We outline open questions and name future challenges that have to be addressed by the research community to enable the use of collaborative interactive machine learning for problem solving in a large scale

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore